

Waterafstotende Duinbodems: Van Molecuul toe Ecosysteem

Stefan Dekker¹

And Jiefei Mao¹ and Koen Siteur¹, Klaas Nierop²

¹Copernicus Institute of Sustainable Development ² Earth Sciences

Universiteit Utrecht

Introductie

- Waterafstotende bodems worden overal gevonden.
- Het kan waterinfiltratie voorkomen en zorgen voor erosie en verminderde plantengroei → niet handig van de plant?;
- Afhankelijk van organisch stof, maar welke biomarkers zijn het meest belangrijk?

Field site

Transecten

cm)

Transect afstand 16.0m

Bodemmonsters zijn verzameld op verschillende dieptes en afstanden

1: SWR-markers hoe meten? Welke bodem-extracties?

1: SWR-markers hoe meten? Welke bodem-extracties?

Mao et al. Geoderma 2014

Een klein deel van bodem organisch stof is verantwoordelijk voor SWR

Leaf waxes (meer aanwezig) Soil water repellency Water laag Wortels (Suberins) (veel sterkere SWR, 🖊 Al=fractie) **NEW**!

3: Van SWR-makers naar SWR-biomarker

Meest voorkomende SWR-markers in bodem

Via GC/GC-MS

Mao et al. Stoten 2016

SWR-markers

Biomarker in vegetatie

Table 6

The left hand part shows the most abundant SWR-markers; the right hand part indicates the main prigin of these in plants and biomass types.

SWR-marker signal in soil				Biomarker in vegetation	
SWR-markers name	Profile	Location (m)	Vegetation covering	Biomarker name	Most abundantly found in species
(D) C ₂₆ alcohol	Topsoil	5	Tufted grass and timothy-grass	Extractable C26 alcohol	Leaves of tufted grass and creeping
	Topsoil	6	Tufted grass and creeping bentgrass		bentgrass
 (D) C₂₄ α,ω-dicarboxylic acid 	Topsoil	5	Tufted grass and timothy-grass	Ester-bound C ₂₄ α ₄ ω-dicarboxylic acid	Roots of red fescue and wood bluegrass
	Topsoil	6	Tufted grass and creeping bentgrass		
(AS) C ₁₈ alcohol	Topsoil	1	Oak	Ester-bound C ₁₈ alcohol	Roots of oak
(AS) C ₂₂ ω-hydroxy fatty acid	Topsoil	6	Tufted grass and creeping bentgrass	Ester-bound C ₂₂ ω-hydroxy fatty acid	Roots of turfed grass and wood bluegrass
(AS) C ₂₄ ω-hydroxy fatty acid	Topsoil	4	Wood bluegrass, turfed grass and carex	Ester-bound C ₂₄ ω-hydroxy fatty acid	Roots of wood bluegrass
(Al) C ₂₂ ω-hydroxy fatty acid	Topsoil	2	Red fescue, tufted grass and creeping bentgrass	Ester-bound C ₂₂ ω-hydroxy fatty acid	Roots of turfed grass and wood bluegrass
	Topsoil	4	Wood bluegrass, turfed grass and carex	12.0526	
(AI) C ₂₄ ω-hydroxy fatty acid	Topsoil	2	Red fescue, tufted grass and creeping bentgrass	Ester-bound C ₂₄ ω -hydroxy fatty acid	Roots of wood bluegrass
	Topsoil	4	Wood bluegrass, turfed grass and carex	1.445.07	
(AI) C ₂₂ α,ω-dicarboxylic acid	Topsoil	2	Red fescue, tufted grass and creeping bentgrass	Ester-bound C ₂₂ a, es-dicarboxylic acid	Roots of turfed grass and carex
(AI) C ₂₄ α,ω-dicarboxylic acid	Topsoil	2	Red fescue, tufted grass and creeping bentgrass	Ester-bound C ₂₄ α,ω-dicarboxylic acid	Roots of red fescue and wood bluegrass

Veel terug te vinden in wortels! Conclusie: Blokkeren waterinfiltratie vooral in de bodem → voordeel voor vegetatie

Eniphical abstract shows that in an ecosystem with task, grasses and sedges, the roots of vario. tribute differently in the top- and subsoils. The soil water repellency was measured using wate. time test. The suils were estracted sequentially and soil water repellency markers, e.g., Cert or-b and C24 man-dicarboxylic acid, were observed many derived from plasm

4: Gevolgen voor Ecosyteem?

Ecosystems (2016) 19: 1210-1224 DOI: 10.1007/s10021-016-9995-9

© 2016 The Author(s). This article is published with open access at Springerlink.com

Soil Water Repellency: A Potential Driver of Vegetation Dynamics in Coastal Dunes

Koen Siteur,¹* Jiefei Mao,^{1,2} Klaas G. J. Nierop,² Max Rietkerk,¹ Stefan C. Dekker,¹ and Maarten B. Eppinga¹

W-B cycle

Cyclische ontwikkeling:

Biomassa (B) watergehalte (W)

Conclusies

1. SWR-markers: hoe meten?

- Via nieuw extractie-schema
- Hoe met kleiige bodems?
- 2. Wat zijn de SWR-markers?
 - Meest sterke SWR markers zijn de suberins (wortels)
 - Fractie van totale organisch stof
- 3. Van SWR-marker naar SWR-biomarker?
 - SWR-biomarkers in wortels van eik, en vele soorten gras.
- 4. Gevolgen voor ecosysteem?
 - Mogelijkheid tot cyclische ontwikkeling van biomassa