ISRIC World Soil Information Service (WoSIS ver. 2.0)

Towards the standardization and harmonization of world soil data

Niels Batjes, Eloi Ribeiro, Ad van Oostrum, Johan Leenaars and Jorge Mendes de Jesus

Thematic day on "Soil data – New developments and applications" organised by the Dutch Soil Science Society (NBV) and ISRIC – World Soil Information (Wageningen, 4 December 2015)

WoSIS objective

- Developing a centralized enterprise database to:
 - safeguard world soil data 'as is'
 - share soil data (point, polygons and grids) upon their standardization and harmonization
 - provide input for a range of applictions

"We need to better understand and manage our global soil resources" <u>Status of the World Soil Resources Report</u> (GSP, 4 December 2015)

"Decision makers and managers must have access to the information they need, when they need it, and in a format they can use" (GEO, 2010)

Basic WoSIS principles

- Everybody may contribute data for inclusion in WoSIS
- Data providers must indicate how their data may be distributed
- Conditions for use (licences) are stored/enforced in WoSIS
- The submitted data will be gradually standardized and harmonized, ultimately to make them "comparable as if assessed by a single given (reference) method"
- All quality-assessed and harmonized "shared" data will be made queryable using various web services embedded in ISRIC's upcoming Spatial Data Infrastructure
- The next slides serve to illustrate some of these ongoing developments

Areas of harmonization

"Providing mechanisms for the collation, analysis and exchange of consistent and comparable global soil data and information" (<u>Baritz et al. 2014</u>, GSP Pillar V)

Source data

- Depend on soil profile data provided by a wide range of international partners
- Not all profile data are freely accessible due to inherited restrictions (licences)
- Access rights and lineage are managed in WoSIS 2

WoSIS - Cooperating institutions and experts

Special thanks go to the steadily growing number of data providers, including soil survey organisations, research institutes and individual experts, that have contributed data for consideration in WoSIS:

- Africa Soil Profiles Database (for contributors see: http://www.isric.org/content/africa-soil-profiles-database)
- Food and Agriculture Organisation of the United Nations (FAO): various inputs through SOTER and WISE-related projects (see: http://www.fao.org/3/a-i3161e.pdf (12)).
- National Cooperative Soil Survey, National Cooperative Soil Characterization Database (NCSS; see: http://ncsslabdatamart.sc.egov.usda.gov/)
- National Soil Profile database for Canada, Canadian Soil Information Service (Canadian Soil Information Service (Canadian Soil Information Service (Canadian Soil Information Service (Canadian Soil Service (Canadian Service (Canadian
- International Soil Carbon Network (ISCN, see http://iscn.fluxdata.org/Pages/default.aspx)

Towards data standardization and harmonization

Data base format conversion

Map source data into WoSIS2 data model

WoSIS2 data model

Relational model implemented in PostgreSQL

🗄 map unit soll co

Flag repeated profiles

Key:

ISRIC

- ISIS ISRIC Soil Information System (*reference collection*)
- SOTER Soil and Terrain database programme (*compilation*)
- WISE World Inventory of Soil Emission potentials (*compilation*)
- AfSP Africa Soil Profiles database (compilation)

Data holdings in WoSIS 2

(December 2015)

- About 98,000 unique profiles
- Some 76,000 profiles are georeferenced within defined limits
- Number of measured data for each property varies between profiles with depth, generally depending on the purpose of the initial studies
- Source data based on diverse (inter)national standards
- Generally, limited quality information provided with the source (analytical) data

Lineage:

• Datasets, reports & maps Soil observations and measurements:

- Feature (georeferenced profiles & layers)
- Attribute (x-y-z-t, map, class, site, layer-field, layer-lab)
- Method
- Value, including units of expression

Standardize soil (analytical) method descriptions

Initial focus on 9 properties considered in the GlobalSoilMap specifications

1	pН	Towards the standardization and harmonization of world soil data			
	Organic carbon	Procedures manual			
Specifications	CEC	ISRIC World Soil Information Service (WoSIS version 2.0)			
GlobalSoilMap.net products Version 2.0	Bulk Density	ISRIC Would Soil Information			
	Water Holding Capacity ^b	world Soll Information			
	Calcium carbonate equivalent	ISRIC Report 2015/03			
Report 1	Sand, silt, clay fractions				
March, 2011	Coarse fragments (>2mm; as volume percent of whole soil)				
Globa SoilMap.net	Electrical conductivity				

Standardize soil analytical method descriptions

- 'A property is best described by key elements of the (laboratory) procedure applied' (Soil Survey Staff, 2011)
- Similar approach has been developed for WoSIS 2: 'Major characteristics of commonly used methods for determining a given soil property are characterised'

				> Code	e confidence in the 'translation':
Feature name		Analytical me	'Low', 'Medium', 'High'		
	ISO ª	USDA ^b	ISRIC	Stan	dardize units of measurements
Solution	KCI	KCI	KCI		
Concentration	1 M	1 M	1 M		GSM: pH water, 1:5
Ratio	1:5	1:1	1 : 2.5		
Instrument	Electrode	Electrode	Electrode	9	
^a ISO 10390 2005	specifies an instrum	ental method for the r	outine determination	of pH usin	ng a

WoSIS 2 – 'Standardized' contents

						/
	desc_attribute_standard_id	desc_unit_id	n_attributes	n_profiles	n_rows_source	n_rows_standard
	Bulk density	kg/ <u>dm</u> ³	34	25014	446769	446613
	Bulk density whole soil	kg/ <u>dm</u> ³	4	32852	438749	438739
nt	Calcium carbonate equivalent fraction	g/kg	1	601	2164	2164
nt	Calcium carbonate equivalent total	g/kg	18	32244	168412	168395
	Organic carbon	g/kg	26	66689	388368	387835
	Total carbon	g/kg	3	20857	103781	103781
	Clay fraction	g/100g	1	2235	12835	12835
	Clay total	g/100g	23	87308	525061	525052
	Coarse fragments gravimetric fraction	g/100g	29	35437	4181475	4181342
	Coarse fragments gravimetric total	g/100g	2	34003	294652	294617
	Coarse fragments volumetric fraction	cm ³ /100cm ³	10	32846	1103614	1103146
	Coarse fragments volumetric total	cm ³ /100cm ³	23	46582	302388	282415
	pH CaCl2	unitless	8	47730	293977	293966
	pH field	unitless	1	15	87	43
	pH H2O	unitless	26	84528	567623	558458
	pH KCI	unitless	19	16641	110490	110482
	pH NaF	unitless	2	5844	29904	29890
	pH NH4CL	unitless	1	24	148	148
	pH unknown	unitless	2	35	236	236
	Sand fraction	g/100g	79	63631	1854800	1854799
	Sand total	g/100g	21	85941	516729	516727
	Silt fraction	g/100g	8	50486	616493	616319
	Silt total	g/100g	20	83367	505054	504992
	Water retention gravimetric	g/100g	16	36747	383479	379597
	Water retention volumetric	cm ³ /100cm ³	104	21726	167630	167403
			481		13,014,918	12,979,994

Some 28.5 million soil analytical records in WoSIS 2
 45% thereof has been 'standardized' and quality-assessed

Harmonize to reference method 'Y'

(not yet undertaken in WoSIS)

Table 11 Example regression equations for converting values of pH between different methods

No. Target Method (Y)	Source Method (X)	Equation	R2	Reference
1 pH (1:1 0.01 m CaCl2)	pH (1:1 water)	y = 1.08(x) - 0.973	0.98	Miller and Kissel (2010)
2 pH (1:1 0.01 m CaCl2)	pH (saturated paste)	y = 1.10 (x) - 0.923	0.98	Miller and Kissel (2010)
3 pH (1:1 0.01 m CaCl2)	pH (1:2 water)	y = 1.05 (x) - 0.950	0.97	Miller and Kissel (2010)
4 pH (1:1 water)	pH (1:1 0.01 m CaCl2)	y = x + 0.267 (EC 1:1 water) ^{-0.445}	0.99	Miller and Kissel (2010)
5 pH (1:2 water)	pH (1:1 0.01 m CaCl2)	y = x + 0.239 (EC 1:1 water) ^{-0.505}	0.98	Miller and Kissel (2010)
6 pH (1:5 0.01 m CaCl2)	pH (1:5 water)	v = 1.012 (x) - 0.76	0.99	Convers and Davey (1988)

 "Make the data comparable, as if assessed by a single given (reference) method"

- "There is generally no universal equation for converting from one method to another in all situations" (GlobalSoilMap 2013)
- This would imply that: "each regional node will need to develop and apply node-specific conversions (towards the GSP-adopted standard methods and soils), building on comparative analyses of say archived samples" (Baritz et al., 2014)

OGC soil IE experiment

- OGC Soil Data Interoperability Experiment
- Development and testing of a Soil Markup Language (soilML) (Geography ML compatible encoding for soil features)
- WoSIS2 data model was used for testing (Soil IE presentation at 97th OGC Tech. Comm., Sydney, Australia, 3/12/2015)
- On the way to a new OGC standard?

IE initiators:

- <u>CSIRO</u>, Commonwealth Scientific and Industrial Research Organisation, Australia
- Landcare Research New Zealand (*Tech. Lead*)
- ISRIC World Soil Information, The Netherlands

World Soil Information

OGC soil IE experiment

OGC soil IE experiment

- ISRIC developed a Web Processing Service (WPS) and Soil Pedotransfer Service (*prototype*):
 - Get soil horizon information on texture from the server
 - Apply PTF to calculate: bulk density, available water (FC, WP), and saturated hydraulic conductivity

<?xml version="1.0"?>

- <wps:ExecuteResponse xml:lang="en-CA" serviceInstance="http://wps.isric.org/wps:80/wps?service=w
 xsi:schemaLocation="http://www.opengis.net/wps/1.0.0 http://schemas.opengis.net/wps/1.0.0/wp
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xlink="http://www.w3.org/1999,
 xmlns:ows="http://www.opengis.net/ows/1.1" xmlns:gml="http://www.opengis.net/gml">
 - <wps:Process wps:processVersion="0.1">
 - <ows:Identifier>pedotransfer_texture</ows:Identifier>
 - <ows:Title>Soil Pedo Transfer service</ows:Title>
 - <ows:Abstract>Process will calculate wilting point, field capacity and bulk density based on pa EXPERIMENTAL SERVICE NO WARRANTY OF VALUES GENERATED OR SERVICE UPTIME. Exercises request=execute&service=wps&identifier=pedotransfer_texture&version=1.0.0&datainpu </wps:Process>
 - <wps:Status creationTime="2015-11-30T09:29:11Z">
 - <wps:ProcessSucceeded>PyWPS Process finished</wps:ProcessSucceeded>
 - </wps:Status>
 - <wps:ProcessOutputs>
 - <wps:Output>
 - <ows:Identifier>soilhorizon</ows:Identifier>
 - <ows:Title>Parsed XML section used for calculation</ows:Title>
 - <wps:Data>
 - <wps:ComplexData mimeType="text/xml">

Serving WoSIS data to the user

(prototype)

х

- source_val: 7.1
- standard_a: pH
- standard_1: unitless
- standard_2: Real
- standard_3: concentration = not applied, instrument = unknown, ratio = 1:2, solution = water [H2O]
- country_id: IN
- st_y: 23.1666666666666666
- st_x: 79.95

Content consistency checks are ongoing

а

- Prototype WFS (via <u>www.isric.org/data/wosis</u>)
- Official release in 2016 through ISRIC's upcoming GeoNode

Interoperability and webservices

(SDI under development)

Work in progress ...

Conclusions

- Disparate source databases pose many and diverse challenges
- In view of its global scope, WoSIS will always remain 'work in progress'
- Future releases of WoSIS will consider a broader range of soil data and their standardization/harmonization
- WoSIS-derived data will be served using an increasing range of webservices through ISRIC's evolving SDI (2016)

Thank you

Further information: www.isric.org/data/wosis

